Rational Group Algebras of Finite Groups: from Idempotents to Units of Integral Group Rings

نویسندگان

  • ERIC JESPERS
  • GABRIELA OLTEANU
چکیده

We give an explicit and character-free construction of a complete set of orthogonal primitive idempotents of a rational group algebra of a finite nilpotent group and a full description of the Wedderburn decomposition of such algebras. An immediate consequence is a well-known result of Roquette on the Schur indices of the simple components of group algebras of finite nilpotent groups. As an application, we obtain that the unit group of the integral group ring ZG of a finite nilpotent group G has a subgroup of finite index that is generated by three nilpotent groups for which we have an explicit description of their generators. Another application is a new construction of free subgroups in the unit group. In all the constructions dealt with, pairs of subgroups (H,K), called strong Shoda pairs, and explicit constructed central elements e(G,H,K) play a crucial role. For arbitrary finite groups we prove that the primitive central idempotents of the rational group algebras are rational linear combinations of such e(G,H,K), with (H,K) strong Shoda pairs in subgroups of G.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wedderburn decomposition of finite group algebras

We show a method to effectively compute the Wedderburn decomposition and the primitive central idempotents of a semisimple finite group algebra of an abelian-by-supersolvable group G from certain pairs of subgroups of G. In this paper F = Fq denotes a finite field with q elements and G is a finite group of order n such that FG is semisimple, or equivalently (q, n) = 1. The group algebra FG is a...

متن کامل

Finite group algebras of nilpotent groups: A complete set of orthogonal primitive idempotents

We provide an explicit construction for a complete set of orthogonal primitive idempotents of finite group algebras over nilpotent groups. Furthermore, we give a complete set of matrix units in each simple epimorphic image of a finite group algebra of a nilpotent group.

متن کامل

Group Algebras of Kleinian Type and Groups of Units

The algebras of Kleinian type are finite dimensional semisimple rational algebras A such that the group of units of an order in A is commensurable with a direct product of Kleinian groups. We classify the Schur algebras of Kleinian type and the group algebras of Kleinian type. As an application, we characterize the group rings RG, with R an order in a number field and G a finite group, such tha...

متن کامل

Idempotents in complex group rings: theorems of Zalesskii and Bass revisited

Let Γ be a group, and let CΓ be the group ring of Γ over C . We first give a simplified and self-contained proof of Zalesskii’s theorem [23] that the canonical trace on CΓ takes rational values on idempotents. Next, we contribute to the conjecture of idempotents by proving the following result: for a group Γ , denote by PΓ the set of primes p such that Γ embeds in a finite extension of a pro-p-...

متن کامل

Group rings satisfying generalized Engel conditions

Let R be a commutative ring with unity of characteristic r≥0 and G be a locally finite group. For each x and y in the group ring RG define [x,y]=xy-yx and inductively via [x ,_( n+1)  y]=[[x ,_( n)  y]  , y]. In this paper we show that necessary and sufficient conditions for RG to satisfies [x^m(x,y)   ,_( n(x,y))  y]=0 is: 1) if r is a power of a prime p, then G is a locally nilpotent group an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010